Abstract

The prevention of neurodevelopmental disorders (NDD) of prenatal origin suffers from the lack of objective tools for early detection of susceptible individuals and the long time lag, usually in years, between the neurotoxic exposure and the diagnosis of mental dysfunction. Human data on the effects of alcohol, lead, and mercury and experimental data from animals on developmental neurotoxins and their long-term behavioral effects have achieved a critical mass, leading to the concept of the Developmental Origin of Health and Disease (DOHaD). However, there is currently no way to evaluate the degree of brain damage early after birth. We propose that extracellular vesicles (EVs) and particularly exosomes, released by brain cells into the fetal blood, may offer us a non-invasive means of assessing brain damage by neurotoxins. We are inspired by the strategy applied by Alan Turing (a cryptanalyst working for the British government), who created a first computer to decrypt German intelligence communications during World War II. Given the growing evidence that microRNAs (miRNAs), which are among the molecules carried by EVs, are involved in cell-cell communication, we propose that decrypting messages from EVs can allow us to detect damage thus offering an opportunity to cure, reverse, or prevent the development of NDD. This review summarizes recent findings on miRNAs associated with selected environmental toxicants known to be involved in the pathophysiology of NDD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.