Abstract

Concentration gradients inside cells are involved in key processes such as cell division and morphogenesis. Here we show that a model of the enzymatic step catalized by phosphofructokinase (PFK), a step which is responsible for the appearance of homogeneous oscillations in the glycolytic pathway, displays Turing patterns with an intrinsic length-scale that is smaller than a typical cell size. All the parameter values are fully consistent with classic experiments on glycolytic oscillations and equal diffusion coefficients are assumed for ATP and ADP. We identify the enzyme concentration and the glycolytic flux as the possible regulators of the pattern. To the best of our knowledge, this is the first closed example of Turing pattern formation in a model of a vital step of the cell metabolism, with a built-in mechanism for changing the diffusion length of the reactants, and with parameter values that are compatible with experiments. Turing patterns inside cells could provide a check-point that combines mechanical and biochemical information to trigger events during the cell division process.

Highlights

  • Concentration gradients inside the cytosol are a vital piece of the cell’s machinery

  • In this paper we have provided the first closed example of Turing pattern formation in a model of a vital piece of a cell’s real biochemistry, with a built-in mechanism for the change of the morphogens diffusion length, and with parameter values that are compatible with experiments

  • Our results suggest that the pattern of enzyme regulation that gives rise to the glycolytic oscillations may provide the basis for the formation of stationary spatial structures both at the cellular and supracellular level

Read more

Summary

Introduction

Concentration gradients inside the cytosol are a vital piece of the cell’s machinery. The occurrence of Turing patterns has not been unequivocally proven for a biochemical reaction in which reaction rates, concentrations and diffusion coefficients are within realistic physiological values. We show the existence of cell-sized Turing patterns in a model of glycolysis, using realistic parameter values and equal diffusion coefficients of ATP and ADP.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.