Abstract

In this work, we introduce a two-dimensional domain predator-prey model with strong Allee effect and investigate the Turing instability and the phenomena of the emergence of patterns. The occurrence of the Turing instability is ensured by the conditions that are procured by using the stability analysis of local equilibrium points. The amplitude equations (for supercritical case cubic Stuart–Landau equation and for subcritical quintic Stuart–Landau equation) are derived appropriate for each case by using the method of multiple time scale and show that the system supports patterns like squares, stripes, mixed-mode patterns, spots and hexagonal patterns. We obtain the asymptotic solutions to the model close to the onset instability based on the amplitude equations. Finally, numerically simulations tell how cross-diffusion plays an important role in the emergence of patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.