Abstract

In this paper, we consider a reaction–diffusion model with Degn–Harrison reaction scheme. Some fundamental analytic properties of nonconstant positive solutions are first investigated. We next study the stability of constant steady-state solution to both ODE and PDE models. Our result also indicates that if either the size of the reactor or the effective diffusion rate is large enough, then the system does not admit nonconstant positive solutions. Finally, we establish the global structure of steady-state bifurcations from simple eigenvalues by bifurcation theory and the local structure of the steady-state bifurcations from double eigenvalues by the techniques of space decomposition and implicit function theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.