Abstract

The Allee effect is widespread among endangered plants and animals in ecosystems, suggesting that a minimum population density or size is necessary for population survival. This paper investigates the stability and pattern formation of a predator–prey model with nonlinear reactive cross-diffusion under Neumann boundary conditions, which introduces the Allee effect. Firstly, the ODE system is asymptotically stable for its positive equilibrium solution. In a reaction system with self-diffusion, the Allee effect can destabilize the system. Then, in a reaction system with cross-diffusion, through a linear stability analysis, the cross-diffusion coefficient is used as a bifurcation parameter, and instability conditions driven by the cross-diffusion are obtained. Furthermore, we show that the system (5) has at least one inhomogeneous stationary solution. Finally, our theoretical results are illustrated with numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call