Abstract

We are concerned with the Turing instability and pattern caused by cross-diffusion in a strongly coupled spatial predator–prey system. We explore how cross-diffusion destabilizes the spatially uniform steady state which is stable in reaction–diffusion systems, and explicitly describe the Turing space under certain conditions. Particularly, when the parameter values are taken in the Turing–Hopf domain, in which the spatiotemporal dynamical behavior is influenced by both Hopf and Turing instabilities, we investigate the formation of all possible patterns, including non-Turing structures such as wave pattern, competing dynamics as well as stationary Turing pattern. Furthermore, numerical simulations are illustrated to verify our theoretical findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call