Abstract

We present necessary and sufficient conditions on the stability matrix of a general n(> or = 2)-dimensional reaction-diffusion system which guarantee that its uniform steady state can undergo a Turing bifurcation. The necessary (kinetic) condition, requiring that the system be composed of an unstable (or activator) and a stable (or inhibitor) subsystem, and the sufficient condition of sufficiently rapid inhibitor diffusion relative to the activator subsystem are established in three theorems which form the core of our results. Given the possibility that the unstable (activator) subsystem involves several species (dimensions), we present a classification of the analytically deduced Turing bifurcations into p (1 < or = p < or = (n - 1)) different classes. For n = 3 dimensions we illustrate numerically that two types of steady Turing pattern arise in one spatial dimension in a generic reaction-diffusion system. The results confirm the validity of an earlier conjecture [12] and they also characterise the class of so-called strongly stable, matrices for which only necessary conditions have been known before [23, 24]. One of the main consequences of the present work is that biological morphogens, which have so far been expected to be single chemical species [1-9], may instead be composed of two or more interacting species forming an unstable subsystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.