Abstract

Abstract After removal of the embryo from developing seeds of Vicia faba L. and Pisum sativum L., the ‘empty’ ovules were filled with a substitute medium (pH 5.5) and the effect of the osmolality of this solution on assimilate transport was exandned. In pulse‐labelling experiments with a mixture of [3H]sucrose and [14C]α‐andnoisobutyric acid (AIB), a solute concentration of 400 mol m−3 (100 mol m3− sucrose + 300 mol m−3 mannitol) was too low to maintain sugar and andno acid transport into empty ovules of V. faba in a very early stage of development (embryo dry weight < 100 mg) on the same level as transport into intact ovules within the same fruit. A 550‐mol m−3 solution could maintain the normal rate of transport. In experiments with seeds in a more advanced stage of development (embryo dry weight > 250 mg), transport of labelled sucrose and AIB into empty ovules filled with a 400‐mol m−3 solution was practically equal to transport into intact ovules within the same fruit. Experiments without isotopes, on sugar and andno acid release from the seed coat, confirmed the important role of the osmotic environment. A very low osmolality of the solution (e.g. 50 mol m−3 mannitol) enhanced net efflux of assimilates from excised seed coats and cotyledons, by inhibiting resorption from the apoplast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.