Abstract

This study investigates the scenario of flow past a circular cylinder in proximity to a moving wall (or equally a body translating in still fluid parallel to a stationary wall). Fifty high-fidelity three-dimensional direct numerical simulations are performed over a parameter space of turbulent Reynolds numbers (Re) of 300 to 1000 combined with gap-to-diameter ratios (G/D) of 0.2 to 3. The flow, hydrodynamic and turbulence characteristics over the (Re, G/D) parameter space are examined in detail. Small-scale rib-like mode B structures and alternate vortex shedding are observed for all cases. The streamwise location for the vortex shedding (quantified by the wake recirculation length Lr) varies strongly with both Re and G/D. The variation of Lr with Re and G/D can be explained by the spanwise circulation $\varGamma_z$ fed into the wake, where the variation trends of Lr and $\varGamma_z$ are inversely correlated. The variations of the mean drag and fluctuating lift coefficients are also governed by the variations in Lr and $\varGamma_z$ . The total kinetic energy in the wake region reduces drastically as G/D reduces below 0.8, which is contributed collectively by (i) reduction in the strength of the shed vortices, (ii) downstream movement of the location of vortex shedding and (iii) associated delayed generation of streamwise vortices. The present results on a moving wall also help to explain several flow and hydrodynamic characteristics reported in the literature for a stationary wall, because the moving wall eliminates the complex wall boundary layer and retains a ‘clean’ near-wall effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call