Abstract
We consider the motion of the mass of fluid ejected through a sharp-edged orifice by the motion of a piston. The vorticity formed by viscous forces within the separated flow at the sharp edge rolls up to form a concentrated vortex which, after a development period, consists of a core of very fine scale turbulence surrounded by a co-moving bubble of much larger scale turbulence. This bubble entrains outer fluid, mixes with it, and deposits the majority into a wake together with some small fraction of the total vorticity of the ring. Enough fluid is retained to account for the slow growth of the whole fluid mass. A theory which takes account of both the growth process and the loss of vorticity is proposed. By comparison with experimental measurements we have determined that the entrainment coefficient for turbulent vortex rings has a value equal to 0.011 ± 0.001, while their effective drag coefficient is 0.09 ± 0.01. These results seem to be independent of Reynolds number to within experimental accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Fluid Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.