Abstract

A theoretical analysis shows that velocity profiles in sediment-laden flows are similar to those in clear water. The modified log-wake law, which is developed for clear water by Guo, is also valid in sediment-laden flows. The analysis of the effects of sediment suspension on turbulent kinetic energy and turbulent diffusion shows that: (1) sediment suspension increases mean flow energy loss; (2) sediment suspension weakens turbulent diffusion in the vertical direction and then increases velocity gradient; and (3) sediment suspension affects velocity profile in two ways: average concentration and density gradient. The comparison with narrow-channel laboratory data confirms the theoretical analysis and shows that: (1) the modified log-wake law agrees well with experimental data for sediment-laden flows; (2) both average concentration and density gradient reduce the von Karman constant; and (3) for a given width-depth ratio, sediment concentration slightly increases the wake strength while density gradient has little effect on it. In addition, the modified log-wake law can reproduce experimental data where the maximum velocity occurs below the water surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.