Abstract

The two-dimensional fluid turbulence code SOLT is employed to study the role of midplane turbulence on the scrape-off-layer (SOL) heat flux width of tokamak plasmas. The physics simulated includes curvature-driven-interchange modes, sheath losses, and perpendicular turbulent diffusive and convective (blob) transport. Midplane SOL profiles of density, temperature and parallel heat flux are obtained from the simulation and compared with experimental results from the National Spherical Torus Experiment (NSTX) to study the scaling of the heat flux width with power and plasma current. It is concluded that midplane turbulence is the main contributor to the SOL width for the low power ELM-free H-mode discharges studied, while additional physics is required to explain the plasma current scaling of the SOL width observed experimentally in higher power discharges. Additional simulations predict a transition to a convectively-dominated SOL at critical values of power and connection length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call