Abstract

Direct numerical simulation (DNS, hereafter) of turbulent channel flow with periodic two-dimensional slits has been performed in order to investigate the turbulent statistics and the turbulent structures behind the slits. The Reynolds numbers based on the friction velocity and the channel half width are 10–1500. In the wake region, the mean flow becomes asymmetric with respect to the centerline of the geometry through the Coanda effect. Large-scale vortices are generated at the height of the slit edges. These vortices become deformed in various scenarios and break up into disordered small-scale structures in the shear layers behind the slit. The small-scale vortices are convected toward the channel center. The budgets of the Reynolds stresses have been computed. The significant differences are found between the budgets in this study and those in a backward-facing step turbulence. The positive Reynolds shear stress u ′ v ′ ¯ is observed owing to the flow contraction just behind the slit. The wake region was classified into several categories based upon the budgets of the Reynolds stresses and turbulent structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.