Abstract

Results of an experimental study of the interaction of a turbulent jet with a free surface when the jet issues parallel to the free surface are presented. Three different jets, with different exit velocities and jet-exit diameters, all located two jet-exit diameters below the free surface were studied. At this depth the jet flow, in each case, is fully turbulent before significant interaction with the free surface occurs. The effects of the Froude number (Fr) and the Reynolds number (Re) were investigated by varying the jet-exit velocity and jet-exit diameter. Froude-number effects were identified by increasing the Froude number fromFr= 1 to 8 atRe= 12700. Reynolds-number effects were identified by increasing the Reynolds number fromRe= 12700 to 102000 atFr= 1. Qualitative features of the subsurface flow and free-surface disturbances were examined using flow visualization. Measurements of all six Reynolds stresses and the three mean velocity components were obtained in two planes 16 and 32 jet diameters downstream using a three-component laser velocimeter. For all the jets, the interaction of vorticity tangential to the surface with its ‘image’ above the surface contributes to an outward flow near the free surface. This interaction is also shown to be directly related to the observed decrease in the surface-normal velocity fluctuations and the corresponding increase in the tangential velocity fluctuations near the free surface. At high Froude number, the larger surface disturbances diminish the interaction of the tangential vorticity with its image, resulting in a smaller outward flow and less energy transfer from the surface-normal to tangential velocity fluctuations near the surface. Energy is transferred instead to free-surface disturbances (waves) with the result that the turbulence kinetic energy is 20% lower and the Reynolds stresses are reduced. At high Reynolds number, the rate of evolution of the interaction of the jet with the free surface was reduced as shown by comparison of the rate of change with distance downstream of the local Reynolds and Froude numbers. In addition, the decay of tangential vorticity near the surface is slower than for low Reynolds number so that vortex filaments have time to undergo multiple reconnections to the free surface before they eventually decay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call