Abstract

A turbulent separation-reattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter. The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel. At the inlet of the diffuser, Reynolds number based on the diffuser height is 1.2×105 and the velocity is 25.2m/s. The results of experiments are presented and analyzed in new defined streamline-aligned coordinates. The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress. A scale is formed using the maximum Reynolds shear stresses. It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law exists in the forward shear flow. Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model. The length scale is taken from that developed by Schofield and Perry. The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield-Perry velocity scale as well as the edge velocity of the boundary layer. The results of these experiments are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.