Abstract

We investigate the effect of a two-dimensional, incompressible, turbulent flow on soft granular particles and show the emergence of a crystalline phase due to the interplay of Stokesian drag and short-range interparticle interactions. We quantify this phase through the bond order parameter and local density fluctuations and find a sharp transition between the crystalline and noncrystalline phases as a function of the Stokes number. Furthermore, the nature of preferential concentration, characterized by the correlation dimension, is significantly different from that of particle-laden flows in the absence of repulsive potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.