Abstract
Profiles of mean and turbulent velocity and vorticity in a tidal bottom boundary layer are reported. Friction velocities estimated (1) by the profile method using the time mean streamwise velocity, (2) by the eddy‐correlation method using the turbulent Reynolds stress, and (3) by the dissipation method using the turbulent kinetic energy dissipation rate ε are in good agreement. The mean streamwise velocity component exhibits two distinct log layers. In both layers, ε is inversely proportional to the distance from the bottom Z. The lower log layer occupies the bottom 3 m. In this layer, the turbulent Reynolds stress is nearly constant. The dynamics in the lower log layer are directly related to the stress induced by the seabed. The upper log layer spans 5 to 12 m above the bottom. In this layer, the turbulent Reynolds stress decreases toward the surface. The friction velocity estimated by the profile method in the upper log layer is about 1.8 times of that estimated in the lower log layer. Form drag might be important in the upper log layer. A detailed study of upstream topography is required for the bed stress estimate. The mean profile of vertical flux of spanwise vorticity is nearly uniform with Z and is at least a factor of 5 larger than the vertical divergence of turbulent Reynolds stress to which it may be compared. A new method of estimating the friction velocity is proposed that uses the vertical flux of turbulent spanwise vorticity. This is supported by the fact that the vertical eddy diffusivity for the turbulent vorticity is about equal in magnitude and vertical structure to the eddy viscosity for the turbulent momentum. The friction velocity calculated from the vorticity flux is equal to that estimated by the other three methods. Turbulent enstrophy, corrected for the sensor response function, is proportional to Z−1 for the entire water column. The relation between ε and enstrophy for high‐Reynolds‐number flows is confirmed by our observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.