Abstract

Convective heat transfer coefficient and its interdependency with various key parameters is analyzed for turbulent multi-jet impingement. Air is used as the working fluid impinging on the flat surface via a three-nozzle arrangement. A thorough investigation of velocity and temperature distribution is performed by varying Nozzle Velocity, Height over Diameter ratio (H/D) and Spacing over Diameter ratio (S/D). Convective heat transfer coefficient, average impingement surface temperature, and heat transfer rate are calculated over the impingement surface. It was found that higher S/D ratios result in higher local heat transfer coefficient values near stagnation point. However, increased spacing between the neighboring jets results in less coverage of the impingement surface reducing the average heat transfer. Lower H/D ratios result in higher heat transfer coefficient peaks. The peaks for all three nozzles are more uniform for H/D ratios between 6 and 8. For a fixed nozzle velocity, heat transfer coefficient values are directly proportional to nozzle diameter. For a fixed H/D and S/D ratio, heat transfer rate and average impingement surface temperature increase as the nozzle velocity increases until it reaches a limiting value. Further increase in nozzle velocity causes drop in heat transfer rate due to ingress of large amounts of cold ambient air in the cooking space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call