Abstract

Specific features of the turbulent transfer of the momentum and heat in stably stratified geophysical flows, as well as possibilities for including them into RANS turbulence models, are analyzed. The momentum (but not heat) transfer by internal gravity waves under conditions of strong stability is, for example, one such feature. Laboratory data and measurements in the atmosphere fix a clear dropping trend of the inverse turbulent Prandtl number with an increasing gradient Richardson number, which must be reproduced by turbulence models. Ignoring this feature can cause a false diffusion of heat under conditions of strong stability and lead, in particular, to noticeable errors in calculations of the temperature in the atmospheric boundary layer. Therefore, models of turbulent transfer must include the effect of the action of buoyancy and internal gravity waves on turbulent flows of the momentum. Such a strategy of modeling the stratified turbulence is presented in the review by a concrete RANS model and original results obtained during the modeling of stratified flows in the environment. Semiempirical turbulence models used for calculations of complex turbulent flows in deep stratified bodies of water are also analyzed. This part of the review is based on the data of investigations within the framework of the large international scientific Comparative Analysis and Rationalization of Second-Moment Turbulence Models (CARTUM) project and other publications of leading specialists. The most economical and effective approach associated with modified two-parameter turbulence models is a real alternative to classical variants of these models. A class of test problems and laboratory and full-scale experiments used by the participants of the CARTUM project for the approbation of numerical models are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.