Abstract
Direct numerical simulation is used to examine turbulent mixing in a shear-free stably stratified fluid. Energy is continuously supplied to a small region to maintain a well-developed kinetic energy profile, as in an oscillating grid flow (Briggs et al. 1996; Hopfinger & Toly 1976; Nokes 1988). A microscale Reynolds number of 60 is maintained in the source region. The turbulence forms a well-mixed layer which diffuses from the source into the quiescent fluid below. Turbulence transport at the interface causes the mixed layer to grow under weakly stratified conditions. When the stratification is strong, large-scale turbulent transport is inactive and pressure transport becomes the principal mechanism for the growth of the turbulence layer. Down-gradient buoyancy flux is present in the large scales; however, far from the source, weak counter-gradient fluxes appear in the medium to small scales. The production of internal waves and counter-gradient fluxes rapidly reduces the mixing when the turbulent Froude number is lower than unity. When the stratification is weak, the turbulence is strong enough to break up the density interface and transport fluid parcels of different density over large vertical distances. As the stratification intensifies, turbulent eddies flatten against the interface creating anisotropy and internal waves. The dominant entrainment mechanism is then scouring. Mixing efficiency, defined as the ratio of buoyancy flux to available kinetic energy, exhibits a similar dependence on Froude number to other stratified flows (Holt et al. 1992; Lienhard & Van Atta 1990). However, using the anisotropy of the turbulence to define an alternative mixing efficiency and Froude number improves the correlation and allows local scaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.