Abstract
Abstract An experimental study was carried out to investigate the effect of rotation on turbulent mixing in a stratified fluid when the turbulence in the mixed layer is generated by an oscillating grid. Two types of experiments were carried out: one of them is concerned with the deepening of the upper mixed layer in a stable, two-fluid system, and the other deals with the interaction between a stabilizing buoyancy flux and turbulence. In the first type of experiments, it was found that rotation suppresses entrainment at larger Rossby numbers. As the Rossby number becomes smaller (Ro 0.1), the entrainment rate increases with rotation—the onset of this phenomenon, however, was found to coincide with the appearance of coherent vortices within the mixed layer. The radiation of energy from the mixed layer to the lower non-turbulent layer was found to occur and the magnitude of the energy flux was found to be increased with the rotational frequency. It was also observed that vortices are generated, rather abrup...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.