Abstract
This paper reports results of numerical simulations of a turbulent lifted jet flame of hydrogen–nitrogen mixtures including the effects of the autoignition. The impact of burned gases on the flame stabilization is analysed under the conditions of a laboratory jet flame in a vitiated coflow. In this study, mass flow rate, temperature and exact chemical composition of hot products mixed with air sent toward the turbulent flame base are fully determined. The effects of both non-infinitely fast chemistry and partially premixed combustion are taken into account within a Lagrangian intermittent framework. Detailed chemistry effects are incorporated through the use of a tabulation delay. The concept of residence time of the particles and the transport equation for the mean scalar dissipation rate are included. Numerical simulation of the turbulent diluted jet flame of H2/N2 studied by Cabra and his co-workers at Berkeley University is performed and satisfactory results are obtained: the flame liftoff height is reasonably captured and the predictions display a reasonable agreement with respect to experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.