Abstract

We analyzed a database of a direct numerical simulation of natural convection in a vertical channel. The flow is driven by a constant temperature difference imposed at the walls (Ra = 5.4 × 10 5, Pr = 0.7). The averaged flow and turbulent statistics are in good agreement with previous direct numerical simulations reported in the literature. Contrary to forced convection flows, the fluctuations of the heat transfer rate are uncorrelated with the fluctuations of the wall shear stress, which exhibit a symmetric probability density function. At the low Rayleigh number considered, the large-scale structures, which consist mainly in two counter-rotating vortices, with sizes comparable to the separation of the walls, are responsible for the extreme fluctuations of the wall heat transfer rate. The occurrence and the averaged topology of these structures have been determined using a conditional sampling technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.