Abstract

A major challenge in turbulence-resolving flow simulations is the generation of unsteady and coherent turbulent inflow conditions. Precursor methods have proven to be reliable inflow generators but are limited in applicability and flexibility especially when attempting to couple boundary-layer dynamics with large-scale temporal variations in the direction of the inflow. Here, we propose a methodology that is capable of providing fully developed turbulent inflow for time-varying mean-flow directions. The method is a generalization of a concurrent precursor inflow technique, in which a fully developed boundary-layer simulation that uses periodic boundary conditions is dynamically rotated with the large-scale wind direction that drives the simulation in the domain of interest. The proposed inflow method is applied to large-eddy simulations of boundary-layer flow through the Horns Rev wind farm when subjected to a sinusoidal variation in wind direction at the hourly time scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.