Abstract

Abstract Turbulent flow and heat transfer in rotating ribbed ducts of different aspect ratios (AR) are studied numerically using an unsteady Reynolds averaged Navier–Stokes procedure. Results for three ARs (1:1, 1:4, and 4:1) and staggered ribs with constant pitch (P∕e=10) in the periodically developed region are presented and compared. To achieve periodic flow behavior in successive inter-rib modules calculations are performed in a computational domain that extends to two or three inter-rib modules. The computations are carried out for an extended parameter set with a Reynolds number range of 25,000–150,000, density ratio range of 0–0.5, and rotation number range of 0–0.50. Under rotational conditions, the highest heat transfer along the leading and side walls are obtained with the 4:1 AR, while the 1:4 AR has the highest trailing wall Nu ratio and the lowest leading wall Nu ratio. The 1:4 AR duct shows flow reversal near the leading wall (leading to low Nu) at high rotation numbers and density ratios. For certain critical parameter values (low Re, high Ro, and/or DR), the leading wall flow is expected to become nearly stagnant, due to the action of centrifugal buoyancy, leading to conduction-limited heat transfer. The 4:1 AR duct shows evidence of multiple rolls in the secondary flow that direct the core flow to both the leading and trailing surfaces which reduces the difference between the leading and trailing wall heat transfer relative to the other two AR ducts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.