Abstract

AbstractWe investigate wintertime extreme sea ice loss events on synoptic to subseasonal time scales over the Barents–Kara Sea, where the largest sea ice variability is located. Consistent with previous studies, extreme sea ice loss events are associated with moisture intrusions over the Barents–Kara Sea, which are driven by the large-scale atmospheric circulation. In addition to the role of downward longwave radiation associated with moisture intrusions, which is emphasized by previous studies, our analysis shows that strong turbulent heat fluxes are associated with extreme sea ice melting events, with both turbulent sensible and latent heat fluxes contributing, although turbulent sensible heat fluxes dominate. Our analysis also shows that these events are connected to tropical convective anomalies. A dipole pattern of convective anomalies with enhanced convection over the Maritime Continent and suppressed convection over the central to eastern Pacific is consistently detected about 6–10 days prior to extreme sea ice loss events. This pattern is associated with either the Madden–Julian oscillation (MJO) or El Niño–Southern Oscillation (ENSO). Composites show that extreme sea ice loss events are connected to tropical convection via Rossby wave propagation in the midlatitudes. However, tropical convective anomalies alone are not sufficient to trigger extreme sea ice loss events, suggesting that extratropical variability likely modulates the connection between tropical convection and extreme sea ice loss events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call