Abstract

Two phase mixture model is used to numerically simulate the turbulent forced convection of Al2O3-Water nanofluid in a channel with corrugated wall under constant heat flux. Both mixture and single phase models are implemented to study the nanofluid flow in such a geometry and the results have been compared. The effects of the volume fraction of nanoparticles, Reynolds number and amplitude of the wavy wall on the rate of heat transfer are investigated. The results showed that with increasing the volume fraction of nanoparticles, Reynolds number and amplitude of wall waves, the rate of heat transfer increases. Also the results showed that the mixture model yields to higher Nusselt numbers than the single phase model in a similar case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.