Abstract

Turbulent flow in d-type corrugated pipes of various aspect ratios has been numerically investigated in terms of flow pattern and friction factor, for Reynolds numbers ranging from 5000 to 100,000. The present numerical model was verified by comparing the friction factor with experimental and numerical results from the literature. The numerical analysis suggested that d-type behavior exists for groove aspect ratios up to w/k = (groove width/rib height) = 2 independent of the pitch. However, for a ratio of w/k = 3 an important change in the flow pattern occurs so that the pressure drag exerted by the groove walls becomes important. It is shown that the friction factor is independent of the groove height as long as the flow is similar to a flow in a d-type corrugated pipe. Moreover, the friction factor curve for d-type pipes shows a logarithmic behavior as function of the Reynolds number, so that a simple method can be used to derive an expression for the friction factor as a function of the Reynolds number and the relative groove width only. The results may be useful to engineering projects that require a better prediction of the friction factor in d-type corrugated pipes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.