Abstract

Experimental investigations of the turbulent flow velocities measured in the melt of experimental induction furnaces show, that beside the intensive local turbulence pulsations, macroscopic low‐frequency oscillations of the recirculated toroidal main flow eddies play an important role in the heat and mass exchange processes. Traditional numerical calculations of the flow and transfer processes, based on wide spread commercial codes using various modifications of the k‐ε turbulence model show that these models do not take into account the low‐frequency oscillations of the melt flow and the calculated temperature and concentration distributions in the melt essentially differs from experimental results. Therefore, the melt flow dynamics in an induction crucible furnace was numerically simulated with help of transient three‐dimensional calculations using the large eddy simulation turbulence model. This leads to a good agreement between calculated and measured periods of low‐frequency oscillations and heat and mass transfer between the toroidal flow eddies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.