Abstract
This paper deals with the experimental and computational analysis of flow and heat transfer in a turning duct simulating the overall three-dimensional flow and heat transfer characteristics of gas turbine passages and internal cooling channels. The numerical results obtained for three different Reynolds numbers (790, 40,000, and 342,190) are compared to measured flow characteristics. Extensive measurements of the mean flow structure using a sub-miniature five-hole-probe and a hot-wire provide a quantitative assessment of the computational model used in the analysis. An in-house developed three-dimensional viscous flow solver is the main computational tool of the present study. A well known pressure correction method (SIMPLE) is used for the solution of 3-D incompressible, steady Navier - Stokes equations in a generalized coordinate system. The k - ∈ turbulence model of Launder and Spalding including a curvature correction scheme is utilized to describe the turbulent flow field. A non-staggered grid system is used in an upwind scheme with additional numerical dissipation terms. It is clearly shown that reducing the artificial dissipation terms in a central differencing scheme reduced the numerical dissipation error. Part II of this paper deals with the convective heat transfer aspects of the specific flow near the endwall surface where three-dimensional viscous flow structures are dominant. The measured fluid mechanics data presented in this paper also provide a reliable data set that can be used in the future validation of new computational methods.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.