Abstract

This paper presents the simulation of the condensation of methanol vapour in the presence of non-condensable gas in turbulent flows in a vertical tube. The liquid and gas stream are approached by two coupled turbulent boundary layer. For solving the coupled governing equations for liquid film and gas flow together with the interfacial matching conditions an implicit finite difference method is employed. The effect of the influencing parameters are studied so the effect of inlet Reynolds number, the effect of temperature gradient, mass fraction are illustrated. The numerical results demonstrate that an important concentration of no-condensable gas reduces the heat transfer coefficient and film thickness considerably. The local heat flux and film thickness increase as tube surface temperature decreases at any bulk concentration of non-condensable gas. Moreover, inlet velocity increases as film thickness decreases and heat flux increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.