Abstract
AbstractPredictions for the heights and downwind trajectories of volcanic plumes using integral models are critical for the assessment of risks and climate impacts of explosive eruptions but are strongly influenced by parameterizations for turbulent entrainment. We compare four popular parameterizations using small scale laboratory experiments spanning the large range of dynamical regimes in which volcanic eruptions occur. We reduce uncertainties on the wind entrainment coefficient β which quantifies the contribution of wind‐driven radial velocity shear to entrainment and is a major source of uncertainty for predicting plume height. We show that models better predict plume trajectories if (i) β is constant or increases with the plume buoyancy to momentum flux ratio and (ii) the superposition of the axial and radial velocity shear contributions to the turbulent entrainment is quadratic rather than linear. Our results have important implications for predicting the heights and likelihood of collapse of volcanic columns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.