Abstract

Direct numerical simulations of a turbulent channel with liquid infused surfaces made of longitudinal micro-ridges have been performed to study the effect of texture geometry and interface deformation. The flow conditions consider a viscosity ratio , several values of the micro-ridge pitch and two different Weber numbers, We = 0 and We = 50. The performance is analyzed in terms of drag reduction (DR) with respect to an equivalent smooth channel, and the results compared with those available for super-hydrophobic surfaces (SHS). It is found that, due to the relatively high viscosity of the liquid locked in the substrate, the drag reduction offered by LIS is substantially lower than the corresponding SHS. When reported in terms of the streamwise slip length normalized in wall units, the amount of DR obtained by LIS in the ideal case of flat interface collapses on the SHS data. The interface dynamics has a detrimental effect on the performance, that becomes particularly severe when the pitch increases. The degradation of DR is well parametrized by the log-law shift of the velocity profile, that is found to be proportional to the difference between the virtual origin of the mean flow and that experienced by the overlying turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call