Abstract
The turbulent dispersion of heavy suspended particles in turbulent shear flows is analyzed when crossing trajectory effects are important. A semiempirical expression for particle diffusion coefficient is developed via a comparison with experimental data of two-phase turbulent jet flows. This expression gives the particle momentum diffusion coefficient in terms of the gas diffusion coefficient, mean relatively velocity, and root mean square of the fluctuating fluid velocity. The proposed expression is used in a two-phase flow mathematical model to predict different particle-laden jet flows. The good agreement between the predictions and data suggests that the developed expression for particle diffusion coefficient is reasonably accurate in predicting particle dispersion in turbulent free shear flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.