Abstract

Utilizing four-point joint observations by Magnetospheric Multiscale Spacecraft (MMS), we investigate the main features of the current sheet frozen in (CSFI) the bursty bulk flow. Typical event on the steady long-lasting BBF on July 23, 2017 shows the enhanced dawn-dusk current (Jy0) in the CSFI (β ~ 10). The magnitude of the Jy0 in the CSFI is about 5.5 nA/m2. The CSFI is highly turbulent, with the ratio of ∆J/J0 of ~ 2 (where ∆J is perturbed J). The turbulent CSFI is characterized by intermittent current coherent structures. The magnitude of the spiky-J at coherent structures is typically above 30 nA/m2. Spectrum analysis exhibits that BBF turbulence follows distinct dissipation laws inside and outside the CSFI. Based on MMS observations, we propose a new model of the BBF in the framework of magnetohydrodynamics. In this model, the BBF is depicted as a closed plasma system with the localized current sheet frozen at the center of the flow (Taylor’s hypothesis). In the light of principle of Helmholtz-decomposition, the BBF motion in the tail plasma sheet is explained. The model also predicts the thermal expansion of the BBF after leaving the reconnection source region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.