Abstract

Laminar and turbulent burning velocities were measured in a closed-volume fan-stirred vessel for H2–CO mixtures using two independent methods of flame definition. It has been shown that the unsteady flame development is an important factor and it needs to be taken into account for comparison of the burning rates obtained in different experiments. For the atmospheric pressure flames, the mixtures with faster laminar flame velocities burnt faster in turbulent flow despite the fact that the lean flames exhibit cellular structures. However, even a modest increase of the initial pressure promotes strongly cellularity and causes a significant acceleration of a lean laminar flame. The same lean flame burns faster in turbulent flow as well and this increase in the rate of combustion is greater that can be deduced from variation of the molecular heat diffusivity and laminar flame speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.