Abstract

Turbulent channel flows around a wall-mounted hemisphere numerically are investigated by large eddy simulation, and the Reynolds number based on the hemisphere’s diameter is 3 × 104. The statistical characteristics and turbulent structure evolution are revealed in the Eulerian frameworks and Lagrangian frameworks. The vortex identification and Dynamic Mode Decomposition (DMD) are used to study the evolution of turbulent structure in the Eulerian frameworks, and the finite-time Lyapunov exponents are applied to identify Lagrangian coherent structures (LCS) in the Lagrangian framework. It is found that the developing angle of the hairpin vortex is ∼7° at two frameworks. What is more, there are some hairpin vortices formed behind the hemisphere and some turbulent structures formed near the wall by DMD method. The correlation analysis is applied to investigate the angle variation and scale variation of turbulent structures, and it is observed that the angle of turbulent structures is negative at Y/d ≥ 1.2 and the spanwise length scales of turbulent structures increase as it moves downstream. By studying the LCS behind a wall-mounted hemisphere, there is formation of “kink” caused by viscous interaction between some hairpin vortex legs, which is the characteristic of hairpin vortex deformation. The comparisons of statistical characteristics between Eulerian frameworks and Lagrangian frameworks are conducted by the correlation analysis, the spectrum analysis, and the structure functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.