Abstract

Turbulent channel flows around a wall-mounted hemisphere numerically are investigated by large eddy simulation, and the Reynolds number based on the hemisphere’s diameter is 3 × 104. The statistical characteristics and turbulent structure evolution are revealed in the Eulerian frameworks and Lagrangian frameworks. The vortex identification and Dynamic Mode Decomposition (DMD) are used to study the evolution of turbulent structure in the Eulerian frameworks, and the finite-time Lyapunov exponents are applied to identify Lagrangian coherent structures (LCS) in the Lagrangian framework. It is found that the developing angle of the hairpin vortex is ∼7° at two frameworks. What is more, there are some hairpin vortices formed behind the hemisphere and some turbulent structures formed near the wall by DMD method. The correlation analysis is applied to investigate the angle variation and scale variation of turbulent structures, and it is observed that the angle of turbulent structures is negative at Y/d ≥ 1.2 and the spanwise length scales of turbulent structures increase as it moves downstream. By studying the LCS behind a wall-mounted hemisphere, there is formation of “kink” caused by viscous interaction between some hairpin vortex legs, which is the characteristic of hairpin vortex deformation. The comparisons of statistical characteristics between Eulerian frameworks and Lagrangian frameworks are conducted by the correlation analysis, the spectrum analysis, and the structure functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call