Abstract

Fuels for Advanced Combustion Engine (FACE)-C gasoline/air and toluene primary reference fuel (TPRF) (51.6 vol% iso-octane, 21.5 vol% n-heptane and 26.9 vol% toluene)/air mixtures corresponding to the same Research Octane numbers (RON) of 85 were characterized in terms of determining their burning rates in a fan stirred turbulent vessel and filmed using a high-speed dual Schlieren imaging technique. Also, a Mie scattering planar laser tomography was employed to characterize the variations of flame morphology induced by the simultaneous existences of different turbulent length scales and the susceptibility to develop cellular structures at elevated pressures (through the Darrieus-Landau instability). Measurements were performed in a well-controlled environment of initial pressures 0.1, 0.5 and 1.0 MPa at a fixed initial temperature of 358 K at a range of measured turbulence intensities from 0.5 to 2.0 m/s. The enhancement of turbulent burning velocity ST as a function of turbulence intensity was evaluated. The absence of bending regime was accounted for based on the size of the vessel and limited range of turbulent intensities investigated in the present work. All the present data were empirically correlated by power-law correlation derived for a different flame-type configuration to test its sensitivity to the geometry and type of the burner investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.