Abstract

Transfer functions are developed for the transmission of unsteady shear stress, generated by a turbulent boundary layer in water, through a viscoelastic layer backed by a rigid plate. Existing analytical models are used to estimate the unsteady wall pressure and shear stress from 10–1000 Hz for a flat plate boundary layer with zero pressure gradient. A new model is developed for the transmission of unsteady shear stress through the viscoelastic layer. The model is used to predict the unsteady pressure fluctuations, or flow noise (due to the unsteady shear stress), which would be seen by a finite size sensor embedded under the elastomer layer. The calculated unsteady pressure and shear stress levels are in good agreement with recent experimental measurements. The unsteady shear stress transfer functions are found to have a peak at the acoustic wavenumber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call