Abstract

AbstractAn experimental study has been performed manipulating a fully developed turbulent channel flow, by means of blade manipulators known as outer layer devices (Olds). A large amount of investigation has been performed for boundary layer flow, whereas little research is available for internal flow manipulation. The influence on drag reduction for different configurations (single and tandem) and for some geometric parameters (distance from the wall and blade gap), have been analysed. Reynolds number effect has also been investigated. Some of the mechanisms involved in the skin friction reduction process are examined, in terms of time-space integral scales, Reynolds stresses and spectral analysis. Results show better efficiency for tandem configurations. These give high local skin friction reductions, up to 20%, which are strongly dependent on the manipulator distance from the wall, but have very little dependence on the blade gap and Reynolds number. Turbulence analysis displays reduced fluctuations in all three directions — as with space-time integral scales. Evidence of suppression for the large structures is also shown by spectral analysis. From a global balance it has been verified that no net drag reduction is obtained due to the additional drag introduced by the manipulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.