Abstract
The calculation of turbulence statistics is considered the key unsolved problem of fluid mechanics, i.e., precisely the computation of arbitrary statistical velocity moments from first principles alone. Using symmetry theory, we derive turbulent scaling laws for moments of arbitrary order in two regions of a turbulent channel flow. Besides the classical scaling symmetries of space and time, the key symmetries for the present work reflect the two well-known characteristics of turbulent flows: non-Gaussianity and intermittency. To validate the new scaling laws we made a new simulation at an unprecedented friction Reynolds number of 10 000, large enough to test the new scaling laws. Two key results appear as an application of symmetry theory, which allowed us to generate symmetry invariant solutions for arbitrary orders of moments for the underlying infinite set of moment equations. First, we show that in the sense of the generalization of the deficit law all moments of the streamwise velocity in the channel center follow a power-law scaling, with exponents depending on the first and second moments alone. Second, we show that the logarithmic law of the mean streamwise velocity in wall-bounded flows is indeed a valid solution of the moment equations, and further, all higher moments in this region follow a power law, where the scaling exponent of the second moment determines all higher moments. With this we give a first complete mathematical framework for all moments in the log region, which was first discovered about 100years ago.
Highlights
One of the most successful ideas to understand and model turbulence was to use a statistical approach to turbulent flows
Two key results appear as an application of symmetry theory, which allowed us to generate symmetry invariant solutions for arbitrary orders of moments for the underlying infinite set of moment equations
We show that the logarithmic law of the mean streamwise velocity in wall-bounded flows is a valid solution of the moment equations, and further, all higher moments in this region follow a power law, where the scaling exponent of the second moment determines all higher moments
Summary
One of the most successful ideas to understand and model turbulence was to use a statistical approach to turbulent flows. Turbulence Statistics of Arbitrary Moments of Wall-Bounded Shear Flows: A Symmetry Approach We derive turbulent scaling laws for moments of arbitrary order in two regions of a turbulent channel flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.