Abstract

The control of transport barrier relaxation oscillations by resonant magnetic perturbations (RMPs) is investigated with three-dimensional turbulence simulations of the tokamak edge. It is shown that single harmonics RMPs (single magnetic island chains) stabilize barrier relaxations. In contrast to the control by multiple harmonics RMPs, these perturbations always lead to a degradation of the energy confinement. The convective energy flux associated with the non-axisymmetric plasma equilibrium in the presence of magnetic islands is found to play a key role in the erosion of the transport barrier that leads to the stabilization of the relaxations. This convective flux is studied numerically and analytically. In particular, it is shown that in the presence of a mean shear flow (generating the transport barrier), this convective flux is more important than the radial flux associated with the parallel diffusion along perturbed field lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call