Abstract
The present work is the second part of a numerical analysis of a supersonic ejector in single-phase conditions using R134a as the working fluid. In Part 1, a numerical benchmark of some thermodynamic and two-equation turbulence models has been carried out to highlight the numerical model offering the best compromise between accuracy and calculation cost. The validation was achieved by comparing the predicted entrainment ratio with the experimental data of Garcia del Valle et al. In this part, the ejector performance and local flow features are then investigated by a low-Reynolds number k−ω SST model for a wide range of outlet temperatures. Based on these accurate 2D numerical results, a discussion about the validity of the main assumptions usually made by 1D thermodynamic models is then offered. Finally, an exergy analysis is performed at various characteristic sections of the ejector to determine its global efficiency and shed light on the main sources of losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.