Abstract

Mesoscale chemical reactors capable of operating in the turbulent flow regime, such as confined impinging jets reactors (CIJR), offer many advantages for rapid chemical processing at the microscale. One application where these reactors are used is flash nanoprecipitation, a method for producing functional nanoparticles. Because these reactors often operate in a flow regime just beyond transition to turbulence, modeling flows in these reactors can be problematic. Moreover, validation of computational fluid dynamics models requires detailed and accurate experimental data, the availability of which has been very limited for turbulent microscale flows. In this work, microscopic particle image velocimetry (microPIV) was performed in a mesoscale CIJR at inlet jet Reynolds numbers of 200, 1,000, and 1,500. Pointwise and spacial turbulence statistics were calculated from the microPIV data. The flow was observed to be laminar and steady in the entire reactor at a Reynolds number of 200. However, at jets Reynolds numbers of 1,000 and 1,500, instabilities as a result of the jets impinging along the centerline of the reactor lead to a highly turbulent impingement region. The peak magnitude of the normalized Reynolds normal and shear stresses within this region were approximately the same for the Reynolds numbers of 1,000 and 1,500. The Reynolds shear stress was found to exhibit a butterfly shape, consistent with a flow field dominated by an oblique rocking of the impingement zone about the center of the reactor. Finally, the spatial auto- and cross-correlations velocity fluctuations were calculated and analyzed to obtain an understanding of size of the coherent structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call