Abstract

The radial current generated by ion-neutral momentum exchange is suggested to be one of the methods for generating the radial electric field (E r ), the turbulence transport, and the low-confinement-mode (L-mode) to high-confinement-mode (H-mode) transitions at the edge of tokamak plasmas. In this analysis of the gyrocenter shift, the plasma pressure gradient, the neutral density gradient and the neutral velocity are the major driving mechanisms of the radial current and the electric field. When there is turbulence, small-scale $$\tilde E \times B$$ eddies induce cross-field transport. The confinement time of the National Spherical Torus Experiment is compared with the density fluctuation level to verify the turbulence-induced energy diffusion coefficient from the theory of the gyrocenter shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.