Abstract

Direct numerical simulation data of bypass transition in flat-plate boundary layers are analysed to examine the characteristics of turbulence in the transitional regime. When intermittency is 50 % or less, the flow features a juxtaposition of turbulence spots surrounded by streaky laminar regions. Conditionally averaged turbulence statistics are evaluated within the spots, and are compared to standard time averaging in both the transition region and in fully turbulent boundary layers. The turbulent-conditioned root-mean-square levels of the streamwise velocity perturbations are notably elevated in the early transitional boundary layer, while the wall-normal and spanwise components are closer to the levels typical for fully turbulent flow. The analysis is also extended to include ensemble averaging of the spots. When the patches of turbulence are sufficiently large, they develop a core region with similar statistics to fully turbulent boundary layers. Within the tip and the wings of the spots, however, the Reynolds stresses and terms in the turbulence kinetic energy budget are elevated. The enhanced turbulence production in the transition zone, which exceeds the levels from fully turbulent boundary layers, contributes to the higher skin-friction coefficient in that region. Qualitatively, the same observations hold for different spot sizes and levels of free-stream turbulence, except for young spots which do not yet have a core region of developed turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.