Abstract
The generation of turbulence by uniform fluxes of monodisperse spherical particles moving through a uniform flowing gas was studied experimentally. Phase velocities, moments, probability density functions, and energy spectra were measured within a counterflowing particle/gas wind tunnel using phase-discriminating laser velocimetry. Test conditions included particle Reynolds numbers of 106-990, particle volume fractions less than 0.003%, direct rates of dissipation of turbulence by particles less than 4%, and turbulence generation rates sufficient to yield relative turbulence intensities in the range 0.2-5.0%. Velocity records showed that the flow consisted of randomly arriving wake disturbances within a turbulent interwake region and that the particle wake properties corresponded to recent observations of laminarlike turbulent wakes for spheres at intermediate Reynolds numbers in turbulent environments. Probability density functions of velocities were peaked for streamwise velocities due to contributions from mean streamwise velocities in particle wakes but were Gaussian for cross stream velocities that only involve contributions from the turbulence in the wakes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.