Abstract
AbstractThe daytime and nighttime turbulence profiles within a weak‐wind forest canopy were investigated by using data collected within a temperate mixed conifer canopy in northern Idaho, USA. Turbulence measurements made at three heights on a single tower within a Douglas fir canopy were compared. Data were split between the daytime and nighttime to determine the relationships among the local temperature gradient, wind direction, wind speed, and turbulence levels. The total flow field distributions and vertical statistical profiles were determined for the overnight and daytime periods to observe how the overall flow changed with time of day. During the day, the wind probability distribution function was consistent between heights but depended on the canopy depth overnight. The skewness changed with the dominant wind direction. The kurtosis increased with depth into the canopy and from during the day to overnight. The range of wind speeds observed was higher under unstable conditions than stable conditions. Daytime turbulence had no dependence on wind direction. Overnight, the relationship between turbulence and wind speed changed with wind direction and canopy depth. The highest turbulence values were associated with downslope winds near the canopy top, but the wind direction for the highest turbulence was variable within the trunk space.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.