Abstract

Abstract Condensation and turbulent liquid water transport in stratocumulus clouds involve complicated interactions between turbulence dynamics and cloud microphysical processes, and play essential roles in defining the cloud structure. This work aims at understanding this dynamical–microphysical interaction and providing information necessary for parameterizations of the ensemble mean condensation rate and turbulent fluxes of liquid water variables in a coupled turbulence–microphysics model. The approach is to simulate nonprecipitating stratocumulus clouds with a coupled large eddy simulation and an explicit bin-microphysical model, and then perform a budget analysis for four liquid water variables: mean liquid water content, turbulent liquid water flux, mean cloud droplet number concentration, and the number density flux. The results show that the turbulence contribution to the mean condensation rate comes from covariance of the integral cloud droplet radius and supersaturation, which enhances condensat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.