Abstract

To understand the permeability effects on turbulent rib-roughened porous channel flows, particle image velocimetry measurements are performed at the bulk Reynolds number of 5000–20000. Solid impermeable and porous ribs are considered for the rib-roughness whose geometry is categorised in the k-type roughness whose pitch/rib-height is 10. Three isotropic porous media with nearly the same porosity: 0.8, and different permeabilities (0.004, 0.020, 0.033 mm2) are applied. It is observed that the recirculation between the ribs becomes weak and the recirculation vortex submerges into the porous wall as the wall permeability and Reynolds number increase for both solid and porous rib cases while the recirculation vanishes in high permeable cases. These phenomena result in characteristic difference in turbulence quantities. By fitting the mean velocity profiles to the log-law form, the permeability effects of both rib and bottom wall on the log-law parameters and the equivalent sand-grain roughness are discussed. It is concluded that the zero-plane displacement increases while the von Kármán constant and the equivalent sand-grain roughness decrease as the wall and rib permeability increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call